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We report an ab initio study of the elastic properties and energetics of the orthorhombic �AFO� and rhom-
bohedral �RF� phases of PbZrO3. We report the polarization for the RF phase and the elastic constants, the
sound velocity, and the total energy for both phases. Our results show that the two phases are energetically
close, by 2.3 mRy per formula unit, and the AFO phase is the most stable one consistent with the experimental
phase diagram. The elastic constant and sound velocity calculations show that depending on the orientation,
either phase can be the effectively stiffer one and that these differences are large. This suggests that control of
the balance between these phases via strain is possible, for example, in epitaxy and in particular that the
ferroelectric state can be stabilized even without lattice dilation.
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I. INTRODUCTION

The perovskite solid solution of PbZrO3 and PbTiO3,
which is known as PZT, has been widely investigated1–3 for
many years due to its useful piezoelectric and ferroelectric
properties. The PZT phase diagram1 is very rich. PZT is
generally ferroelectric with a Curie temperature that de-
creases gradually with Zr concentration. It shows several dif-
ferent ferroelectric phases including large rhombohedral
ferroelectric and tetragonal ferroelectric regions separated by
the so-called morphotropic phase boundary �MPB�. How-
ever, pure PbZrO3 �PZ� has an antiferroelectric orthorhombic
structure, which persists for a very narrow composition range
in the PZT phase diagram. There is a low-temperature phase
transition from this antiferroelectric orthorhombic �AFO�
phase to the rhombohedral ferroelectric �RF� phase at about
7% Ti concentration. A transition from the RF phase to the
AFO phase can also be induced by applying modest hydro-
static pressure.4 It has been shown, by several experimental
works,5–15 that a phase switching between the AFO phase to
the RF phase is possible. This arises because electric field
couples to polarization and therefore favors the RF phase.
Also, some experimental investigations have shown that the
stabilization of the ferroelectric state in thin films is possible,
presumably related to stress effects.7,9 A rhombohedral phase
was reported for the end-point compound, PZ,16 in a narrow
temperature range around 230 °C. In any case, it may be
presumed that the RF phase is close in energy to the AFO
phase based on their proximity in the PZT phase diagram and
on theoretical results.17,18

Both the RF and AFO phases may be viewed as distor-
tions of the “perfect” cubic perovskite structure. However,
these distortions are large in Zr rich PZT and so these two
phases are rather different from a structural point of view,
even though they are close energetically. Ab initio calcula-
tions show, for PZ, that the energy gain, due to these distor-
tions, is �0.25 eV /Pb �Ref. 19� relative to the “perfect”

cubic perovskite. The AFO phase has large octahedral
tilts,20,21 while the RF phase of PZT has a different pattern of
tilts and a large polarization characteristic of large ferroelec-
tric displacements of the atoms.22 Therefore the AFO and RF
phases may present quite different elastic behavior, and as
they are energetically close, the understanding of how strains
affect the energetic balance between these two phases is im-
portant in the development of devices that use the
antiferroelectric/ferroelectric switching, as well as in physics
of multilayer systems,23 where strain effects can be very im-
portant in stabilizing phases other than the bulk ground
state.24

The purpose of this paper is to explore this balance and to
report calculations of elastic constants. Even though elastic
properties have been reported by several first-principles cal-
culations, as well as many experimental works for different
materials, including PbTiO3,25,26 elastic properties are diffi-
cult to measure for PZ and PZT bulk, due to the twinning27

of these materials and the difficulty in synthesizing suitable
crystals for measurements. Moreover, the RF phase of pure
PZ is experimentally inaccessible. Nevertheless, PZ thin
films free of twin structures28 can be grown.

Here, we report calculations of the elastic constants for
the RF and AFO PZ phases using a direct first-principles
total energy approach. This yields the bulk modulus, as well
as the sound velocities as a function of direction. The total
energy calculations were performed using an all-electron full
potential linearized augmented plane wave �LAPW� method.
We calculated the total polarization for the RF phase using
Berry phase theory. Our results show that the AFO phase is
more stable than the RF one by 2.3 mRy/Pb. The calculated
polarization of the RF phase is 55 �C /cm2. The sound ve-
locity calculations show very different elastic anisotropies of
the two phases and, depending on the orientation, either
phase can be the stiffer of the two. This suggests that control
via strain can be possible, for example, in epitaxy and that it
may favor the ferroelectric state, even without lattice dila-
tion.
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II. FIRST-PRINCIPLES CALCULATIONS

Our calculations were performed in the framework of the
density functional theory �DFT�,29 within the local density
approximation �LDA�.30 The total energy calculations were
done using the general potential linearized augmented plane
wave �LAPW� method31 with local orbitals32 as implemented
in our in-house code. The sphere radii used in the LAPW
method were 2.20, 2.00, and 1.60 a.u. for Pb, Zr, and O,
respectively. We used a LAPW cutoff RKmax=7.0, where R is
the smallest LAPW sphere radius. The total energy differ-
ences are converged to a precision of better than 1 mRy per
formula unit. All atomic positions were fully relaxed in the
LAPW calculations. To perform the total electric polarization
calculations, we have used the geometric Berry phase
theory,33 implemented in the SIESTA code,34 which is a code
based on an ab initio method that uses a local basis set for
the one electron wave functions and pseudopotentials.35 In
this calculation, we have used the atomic positions obtained
in the LAPW calculations. We used k points36 meshes of 4
�4�4 and 4�2�4 for the integration in the Brillouin zone
for the ten atoms per cell rhombohedral and 40 atoms per
cell orthorhombic structures, respectively, for both methods.

As mentioned, the AFO structure is the ground state of
PbZrO3. It has a 40 atom cell, whose relationship to the ideal
cubic cell is defined by its lattice vectors of approximately

�0,0 ,2�apc, �2,2 ,0�apc, and �1̄ ,1 ,0�apc, where apc is the
pseudocubic lattice constant. The orthorhombic cell related
to the pseudocubic cell is shown in the Fig. 1�a�. The atomic
positions for the Pb, Zr, and O atoms for this structure were
calculated previously19 and shown to be in excellent agree-
ment with experiments.20 In fact, LDA calculations were

shown to be predictive in this material, in that they yielded a
structure different from the existing literature structures, but
which was subsequently verified by neutron diffraction.20

Regarding the rhombohedral cell, which is defined by the
lattice vectors, in the pseudocubic coordinate system,
�0,1 ,1�apc, �1,0 ,1�apc, and �1,1 ,0�apc, there is no experi-
mental data about its lattice constant because it is not the
most stable PZ phase. We start with a pseudocubic lattice
with 10 atoms/cell �R3c space group�, which is a rhombohe-
dron along the �111� direction. This structure is the same as
the phase that occurs with small Ti addition. The initial
pseudocubic lattice constant was obtained by constraining
the pseudocubic volume per formula unit to be equal to that
of the orthorhombic lattice.

III. RESULTS AND DISCUSSIONS

A. Elastic properties

Let us first address the calculations of the �second order�
elastic constants, Cijkl, for the orthorhombic and rhombohe-
dral structures. The Cijkl can be defined using an expansion
of the total energy, E�V ,��, of a strained system of volume V
in a Taylor series with respect to a distortion parameter �.
Keeping until the third term in the Taylor series, since we
have considered only small lattice distortions in our calcula-
tions, E�V ,�� is written as37

E�V,�� = E0 + V0��
i,j

�ij�ij +
1

2 �
i,j,k,l

Cijkl�ij�kl� , �1�

where: E0 is the total energy of an unstrained system of
volume V0, � is the stress tensor matrix, �ij is an element in
the distortion matrix, and the indices i, j, k, and l run over
the x, y, and z.

The strained lattice vectors are obtained by multiplying
the lattice vectors of the unstrained system by the distortion
matrix, which is symmetric ��ij =� ji� and can be written as

	1 + �xx �xy �xz

�yx 1 + �yy �yz

�zx �zy 1 + �zz

 . �2�

For the unstrained orthorhombic lattice, we have used the
experimental values for the lattice constants,38 that is, a
=8.2077 Å, b=11.7742 Å, and c=5.8752 Å. So, the V0
used in Eq. �1� is 70.97 Å3 /Pb, which is 3% larger than the
theoretical �LDA� volume, 68.86 Å3 /Pb. This can change
the value for the elastic constant by 3%. For the unstrained
rhombohedral lattice, we have used a pseudocubic lattice,
which is a rhombohedron along the �111� direction and with
a rhombohedral angle �rh. To calculate this rhombohedral
angle we have performed total energy calculations. To do
that, since the total energy is dependent of the volume, we
have kept the volume per formula unit constant and equal to
that of the orthorhombic cell, varied the rhombohedral angle
from 58.40° to 60.80°, and calculated the total energy. Our
results indicate that the rhombohedral angle that minimizes
the total energy is equal to 59.5°. This structure is energeti-
cally very close �by �0.2 mRy /Pb� to that one with �rh
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FIG. 1. �Color online� Coordinate systems used in our calcula-
tions for the �a� orthorhombic and �b� rhombohedral structures and
their relation to that of the pseudocubic cell. The indices “pc,” “o,”
and “f” refer to the pseudocubic, orthorhombic, and rhombohedral
cells, respectively. The solid circles represent the Pb atoms and apc
is the pseudocubic lattice constant.
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=60°, which corresponds to an fcc lattice as far as the trans-
lational symmetry is concerned. As this energy difference is
very small and is in the range of the numerical errors, we
consider in our calculations the RF unstrained structure with
�rh=60° and a=4.140 27 Å, which was obtained using the
VAFO=VFR constraint. To represent the rhombohedral lattice
we have used the lattice vectors of a corresponding hexago-
nal lattice: a�1

H, a�2
H, and c�. Then, we strain the hexagonal

lattice vectors using Eq. �2�, and we find the corresponding
fcc lattice vectors �a�1, a�2, and a�3�, which match those dis-
torted hexagonal vectors, using the following relations: a�1

H

= �a�1−a�2�, a�2
H= �a�2−a�3�, and c�H= �a�1+a�2+a�3�, where a�1

= �0,1 ,1�a, a�2= �1,0 ,1�a, and a�3= �1,1 ,0�a.
The orthorhombic phase has nine distinct elastic con-

stants, referred to as C11, C22, C33, C12, C13, C23, C44, C55,
and C66; while the rhombohedral phase �R3c space group�
has six distinct elastic constants, that is, C11, C33, C12, C13,
C44, and C14. Here, we have used the Voight notation, where
the indices xx, yy, zz, yz or zy, xz or zx, and xy or yx are
replaced by 1, 2, 3, 4, 5, and 6, respectively. Also, we have
used the following convention39 for the x,y,z coordinate sys-
tem: for the orthorhombic lattice we consider the x, y, and z
axes parallel to a, b, and c, respectively, with c�a�b, as
shown in Fig. 1�a�. For the rhombohedral structure, we

choose the z and y axes along the �111� and �11̄0� directions
of the pseudocubic lattice, respectively, as shown in Fig.
1�b�.

In order to calculate the elastic constants, we have con-
sidered nine �six� distinct distortion matrices for the ortho-
rhombic �rhombohedral� structure. The matrix elements for
each distortion matrix we have used are shown in the Table I.
From Eq. �1�, we observe that the second order coefficient is
a linear combination of elastic constants. For example, to

calculate C11 of the AFO structure, we have used the follow-
ing distortion matrix:

	1 + � 0 0

0 1 0

0 0 1

 .

Using this distortion matrix in Eq. �1�, we obtain the follow-
ing expression for the total energy: E�V ,��=E0+V0��1�
+ 1

2C11�
2�. The second order coefficient related to this distor-

tion is C11 /2. Then, performing total energy ab initio calcu-
lations for each distortion matrix, and allowing a full relax-
ation of the atomic positions, we obtain E�V ,�� for several
values of � ranging from −0.02 to 0.02, for example �1
=−0.01, �2=0.00, �3=0.01, and so on. The calculated total
energies �E��1�, E��2�, E��3� , . . .� are fitted by a third order
polynomial, E���=k0+k1�+k2�2+k3�3, where k0, k1, k2, and
k3 are the polynomial coefficients. Comparing the fitted
equation to Eq. �1�, we observe that the k2 coefficient, which
is determined by ab initio calculations, is equal to the second
order coefficient of Eq. �1�, shown in Table I.

In Table II, we show the calculated elastic constants for
the orthorhombic and rhombohedral structures. The fitting
error that we find is �3%. Thus the error of our calculated
elastic constants is likely �5%, consistent with other LDA
calculations �see, e.g., Refs. 37 and 40�.

Now, using the calculated elastic constants, we obtain the
bulk modulus, B, for both structures. The bulk modulus can
be defined as the inverse of the volume compressibility ���:41

B =
1

�
=

1

S11 + S22 + S33 + 2�S12 + S13 + S23�
, �3�

where S is the compliance matrix, which is defined as the
inverse of the elastic constant matrix. Formulas relating ex-

TABLE I. Matrix elements, �ij, of the distortion matrices �Eq. �2�� we have used in our calculations, and
the corresponding second order coefficients of Eq. �1� �see text�.

Orthorhombic

�xx �yy �zz �xy �xz �yz Second order coefficient

� 0 0 0 0 0 �C11 /2�
0 � 0 0 0 0 �C22 /2�
0 0 � 0 0 0 �C33 /2�
0 0 0 0 0 � �2C44�
0 0 0 0 � 0 �2C55�
0 0 0 � 0 0 �2C66�
� −� 0 0 0 0 ��C11 /2�+ �C22 /2�−C12�
� 0 −� 0 0 0 ��C11 /2�+ �C33 /2�−C13�
0 � −� 0 0 0 ��C22 /2�+ �C33 /2�−C23�

Rhombohedral

� � 0 0 0 0 �C11+C12�
� −� 0 0 0 0 �C11−C12�
0 0 � 0 0 0 �C33 /2�
0 0 0 0 0 � �2C44�
� � � 0 0 0 �C11+ �C33 /2�+C12+2C13�
� −� 0 0 0 � �C11−C12+2C44+4C14�
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plicitly the bulk modulus for the orthorhombic and rhombo-
hedral structures and the elastic constants can be found in
Refs. 42 and 43.

In Table II, we show the results for the calculated bulk
modulus for both structures. This table indicates that the bulk
modulus for the rhombohedral structure is slightly smaller
than that of the orthorhombic structure, indicating that the
RF phase is slightly softer than the AFO phase, though this

difference is not significant in view of the errors in our fits.
Also, our result is in good agreement with the experimental
result for antiferroelectric ceramic PbZrO3, 122 GPa.44

B. Sound velocity

Even though the AFO and RF are distorted lattices based
on the same cubic perovskite, they may as mentioned present
quite different anisotropic elastic behavior because the dis-
tortions are strong. To study this elastic anisotropy, we now
investigate how the stiffness varies in different directions of
the AFO and RF phases. To investigate that, we calculate the
sound velocity, v, for all directions using the Christoffel
relation45,46

�Cijklnjnk − 	v2�il�pl = 0, �4�

where the vector n� indicates the direction of the wave propa-
gation, 	 is the density of the material, �il is the Kronecker
delta, p is the displacement vector, and the indices i, j, k, and
l run over x, y, and z. To obtain the longitudinal and trans-
verse velocities, we need to diagonalize the matrix 
, which
is defined as 
il=� jkCijklnjnk. To compare the results for the
AFO and RF phases, we consider the same coordinate sys-
tem for both structures. As the reference system, we have
chosen the coordinate system of the pseudocubic perovskite
structure, shown in Fig. 1. In this system, the x, y, and z axes

140
160
180
200
220
240
260
280

ρv
2

(G
P

a
)

0 20 40 60 80 100120140160180θ 0
50

100
150

200
250

300
350

400

φ
140

160

180

200

220

240

260

280

140
160
180
200
220
240
260
280

ρv
2

(G
P

a
)

0 20 40 60 80 100120140160180θ 0
50

100
150

200
250

300
350

400

φ
140

160

180

200

220

240

260

280

θ

φ

n

y

z

x
FIG. 2. Longitudinal velocities �v� for the orthorhombic �left� and rhombohedral �right� structures. We use the pseudocubic perovskite

coordinate system, � is the angle, in degrees, between the vector n� and the z axis, and � is the angle, in degrees, between the projection of
the vector n� onto the x-y plane and the x axis. 	 is the PZ mass density.

TABLE II. Calculated elastic constants �C� and bulk modulus
�B�, in GPa, for the antiferroelectric orthorhombic and ferroelectric
rhombohedral structures.

Orthorhombic Rhombohedral

C11 210 C11 229

C22 264 C33 150

C33 158 C12 72

C12 83 C13 64

C13 53 C14 13

C23 85 C44 117

C44 75 B 107

C55 55

C66 67

B 111
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of the orthorhombic lattice are along the �001�, �110�, and

�1̄10� directions of the pseudocubic perovskite, respectively;
while the z and y axes of the rhombohedral lattice are along

the �111� and �11̄0� directions, respectively.
In the Fig. 2, we show the results for the calculated lon-

gitudinal sound velocities for the AFO and RF structures. We
used the cubic perovskite coordinate system, where � is the
angle between the z axis and the vector n� , and � is the angle
between the x axis and the projection of n� onto the plane x-y,
shown in the Fig. 2. Our results indicate that the square of
the longitudinal sound speed multiplied by 	 ranges from
158 to 264 GPa for the AFO phase, and from 150 to 268 GPa
for the RF one. Also, in this figure, we can note the aniso-
tropic elastic behavior for both phases. The square of the
transverse speed multiplied by 	 �not shown� ranges from 55
to 76 GPa, and from 59 to 121 GPa for the AFO and RF
structures, respectively. Also, we plot the difference of the
square of the longitudinal sound speed multiplied by 	 be-
tween the AFO and RF phases, and the results are shown in
the Fig. 3. This figure shows that the difference ranges from
−91 to 89 GPa. The region where the difference is negative
indicates that the RF phase is stiffer than the AFO phase,
while the region where it is positive indicates that the AFO
phase is stiffer than the RF one. So, the above results show
different elastic behavior for the AFO and RF structures, and
suggest that depending on the orientation one phase can be
stiffer or softer than the other one. Therefore as the total
energy of strained systems depends on the elastic constants
�see Eq. �1��, and either phase can be the effectively stiffer
one depending on the orientation, our results indicate that a
control via strain may favor one phase over the other. This
result can explain the stabilization of the ferroelectric phase
by stress effects observed in thin films.7,9

C. Energetics and polarization

So far, we have investigated the elastic properties of the
AFO and RF phases. Turning to the energetics for these
phases, we calculate the total energy as a function of the
volume for both phases, using the distortion matrix: ��xx=�,
�yy =�, �zz=�, �xy =0, �xz=0, �yz=0�. As for the elastic con-

stants calculation, the atomic positions were fully relaxed.
The calculated strain-energy results were fitted by a third
order polynomial and the total energy was minimized in re-
lation to �. Our results show that the orthorhombic phase is
energetically more stable than the rhombohedral phase by
2.3 mRy per formula unit, while the corresponding energy
minimizing volume for the rhombohedral and orthorhombic
phases are quite similar, 69.3 and 68.9 Å3, respectively. For
the AFO phase, the shortest �longest� distance between the
Zr and the nearest O atom �dZr-O� is 2.04 Å �2.15 Å�, the
shortest �longest� distance between the Pb and the nearest O
atom �dPb-O� is 2.43 Å �3.41 Å�, while the Zr-O-Zr angle
ranges from 150° to 170°; for the RF phase, dZr-O is equal to
2.03 Å �2.14 Å�, dPb-O is equal to 2.52 Å �3.32 Å�, and the
Zr-O-Zr angle is around 158°. Thus the off-centerings of the
cations with respect to their cages are similar for both the
ferroelectric and nonferroelectric structures.

To further investigate the energetic balance between those
phases, we calculate the total polarization of the rhombohe-
dral �ferroelectric� phase and the coupled electric field. The
calculated total electric polarization is along the �111� direc-
tion of the cubic perovskite and its value is equal to
55 �C /cm2. The calculated total polarization is in accord
with the maximum polarization, 41 �C /cm2, measured in

PZ thin films.13 The electric field �E� � needed to switch from
antiferroelectric to ferroelectric phases in unstrained bulk can
then be estimated using the total energy difference per unit
formula volume �
U� and the above calculated polarization

P� , using the relation 
U=−P� ·E� . This yields �1.3 MV /cm
along the �111� direction of the cubic perovskite, which is
only an estimate since it assumes that the polarizabilities are
negligible.

IV. CONCLUSIONS

In conclusion, we studied the elastic properties and ener-
getics of the AFO and RF phases of PbZrO3. Our results
show that the AFO and RF phases are energetically close and
the AFO phase is more stable than the RF phase by 2.3
mRy/Pb. The elastic constant and sound velocity calculations
show rather different elastic anisotropies of the two phases
and that depending on the orientation, either phase can be the
effectively stiffer one. So, as the total energy of strained
systems depends on the elastic constants, our results indicate
that a control via strain may favor one phase over the other.
This implies that control of the balance between these two
phases via strain is possible, for example, by epitaxy.
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